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ABSTRACT
We propose an implementable portfolio performance evaluation procedure that compares a
portfolio with respect to the portfolios constructed by an infinite number of Malkiel’s blindfolded
monkeys, or equivalently the whole enumeration of all possible portfolios. We argue that this
approach exhibits two main advantages. First, it does not require any benchmark portfolios
because a portfolio is being compared to an infinite number of portfolios. Second, it is market
condition invariant. Since the market conditions are already reflected in the portfolio perfor-
mances of an infinite blindfolded monkeys, our measure of portfolio performances is invariant to
volatile market conditions.
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1. Introduction

Although their play styles are widely different,
Stephen Curry’s 2015–16 Warriors are often com-
pared with Michael Jordan’s 1995–96 Bulls. With
more than 70 wins, both teams dominated the lea-
gue. Nevertheless, when it comes to the comparisons
of two teams from different era, some argue that the
95–96 Bulls were better as they won the NBA finals.
In addition, it is often told that the entire league was
better in the ‘90s. But this argument is without
criticism. The 15–16 Warriors certainly broke the
Bull’s regular season record with only single digit
losses, thus some argue that the Warriors should get
more credit. Obviously, such debates will continue.
The only thing that everyone can agree upon is that
these two teams performed the best for their respec-
tive season. They competed with other teams, and
ended the season with the most wins. Putting it
differently, they performed better than anyone in
their peer group.

Now let’s change our scope to the main topic of
this article: fund performance evaluation. Consider a
portfolio manager who achieved a −10% return with
a Sharpe ratio of −0.4 in the U.S. equity market
during 2008. During the year, the U.S. equity market
registered a return and Sharpe ratio of about −40%

and −1.4, respectively. Conventional portfolio per-
formance evaluation is to determine whether the
investment manager outperforms the established
benchmark. From this perspective, one can certainly
conclude that the manager has performed better
than the market.

However, can we tell if the manager dominated
the league during the 2008 season like the 95–96
Bulls or the 15–16 Warriors? Or was the manager’s
performance slightly above the average? Since the
return and the Sharpe ratio are merely cardinal
numbers, they do not provide a complete picture of
fund performance. In order to assess how good the
fund performance was, we need information on the
peer group.

Obviously, there is a very simple way to answer
this question. If we have the performance informa-
tion of all portfolios, one can rank any fund among
them, just like the NBA season standings.
Unfortunately, because there are uncountably many
portfolios, it would not be an option to get such
information by actually enumerating an infinite
number of possible portfolios. Of course, one can
collect active fund performance information within
the relevant asset universe, and use it as the basis for
comparison. In fact, this is a common practice in the
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active money management industry. For instance,
prime brokers publish fund performance reports
containing ranking information.

But there are two critical issues with this
approach. First, collecting active fund performance
data is not a trivial task, and sometimes the data are
not available at all. More importantly, the set of
active funds is not necessarily representative of all
portfolios in the relevant asset universe.

The objective of this study is to propose a novel
approach for portfolio performance evaluation that
allows us to obtain the relative ranking information
without collecting the peer fund group data. More
specifically, we want to determine if the performance
of a portfolio was at the top 1%, 10%, or bottom 5%,
without performance data of any other funds. We
achieve this task by revisiting the claim of Malkiel
(1973). In his best-selling book A Random Walk
Down Wall Street, Malkiel stated that ‘a blindfolded
monkey throwing darts at a newspaper’s financial
pages could select a portfolio that would do just as
well as one carefully selected by experts’. This state-
ment was based on his belief that stock price move-
ments are basically random walks, so that not only
blindfolded monkeys but also fund managers would
be unable to predict future stock prices. He thought
both monkeys and fund managers would underper-
form the cap-weighted index.

Even though the monkey metaphor may seem
provocative, it would be worthwhile to carefully
address the concept of comparing fund managers
to blindfolded monkeys. The infinite monkey theo-
rem, which also uses the monkey metaphor, states
that if there are an infinite number of randomly
typing monkeys, one of them will almost surely
type an exact version of William Shakespeare’s
Hamlet. Similarly, if there are infinitely many dart-
throwing monkeys, they would construct all portfo-
lios in the asset universe. Thus, if we could arrange
for an infinite number of dart-throwing monkeys
and put the monkey metaphor aside, we could eval-
uate the performance of a portfolio with respect to
the whole enumeration of all possible portfolios.

To this end, we employ the uniformly distributed
random portfolio (UDRP) methodology developed by
Kim and Lee (2016), which can be regarded as an
analytical generalization of infinite blindfolded mon-
keys. We show that the performance distribution of
UDRP is equivalent to or better than that of actual

active funds. This justifies the use of UDRP as the basis
for comparing fund relative performance.

The portfolio performance evaluation methodology
that we propose has the following two advantages.
First, because a portfolio is evaluated among the
whole enumeration of all possible portfolios generated
by infinite blindfolded monkeys, it is benchmark-free.
Hence, even though asset classes such as fixed-income
and commodities are not provided with well-estab-
lished benchmarks (e.g. cap-weighted index for equi-
ties), the proposed method can be easily applied to
evaluate portfolios constructed with these investments.
Note that infinite blindfolded monkeys can be gener-
ated within any compact set of investments. Second,
the proposed methodology enables comparisons of
portfolios in different asset universes. The proposed
portfolio performance measure being market condi-
tion invariant implies that, in some sense, the measure
is invariant to the market. As the enumeration of all
possible portfolios would reflect the market’s basic
characteristics and the condition at that time, the pro-
posed methodology, with some caution, can conduct a
fair comparison between, say, a fixed-income portfolio
and an equity portfolio.

While the proposed approach is intuitive and easily
implementable, it has certain limitations. Fund man-
agers are subject to various practical matters such as
regional and sectoral weight upper/lower bounds,
tracking error and turnover constraints, rebalancing
frequency, and the like. However, it is difficult to
incorporate these constraints in the UDRP methodol-
ogy since its analytical derivation assumes nothing
about the construction of portfolios except the no-
shorting constraint. Instead, the UDRP does not
require any specific peer information, and, therefore,
it measures the performance of fund managers from a
broad point of view. On the other hand, Ardia and
Boudt (2018) also perform peer evaluation but with
actual peer fund information. They were able to care-
fully address more complicated issues such as false
discoveries as pointed out by Barras, Scaillet, and
Wermers (2010).

The rest of this article is organized as follows.
Section 2 discusses in detail the methodology of
evaluating portfolios with respect to an infinite num-
ber of blindfolded monkeys. In Section 3, we show
how the proposed methodology can be employed to
thoroughly verify the conjecture of Malkiel. Section
4 concludes the study.
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2. Portfolio performance evaluation with
infinite blindfolded monkeys

The portfolio performance evaluation methodology
that we propose starts by generating the whole enu-
meration of all possible portfolios, or equivalently an
infinite number of blindfolded monkeys. Then, the
performance ranking of a portfolio can be easily
derived by ranking the portfolio among infinite blind-
folded monkeys. Although analysing the performance
of blindfolded monkeys, Arnott et al. (2013) argue that
‘it would be time-consuming and costly to arrange for a
monkey to throwdarts at theWall Street Journal’s stock
pages, not to mention tracking down 50 years of their
archived stock lists’. Consequently, they simulated the
monkeys instead of letting actual live monkeys (or
people) throw darts.

However, their simulation approach can also be the
subject of their own argument, when it is compared to
an analytical derivation. Recall the aforementioned
infinitemonkey theorem and assume that we are simu-
lating a large population of randomly typing monkeys.
Then, how long would it take until one of them actually
comes out with a piece of Shakespeare? According to
an experiment, only a few word matches could be
found even after generating 1035 number of pages.1

On the other hand, we can compute the whole distri-
bution, even including a monkey that types the whole
text of Shakespeare’s Hamlet, within a second, once
provided with analytical expressions.

We first introduce the methodology developed by
Kim and Lee (2016), which can be regarded as an
analytical generalization of dart-throwing blindfolded
monkeys, in Section 2.1. Then, we present in Section
2.2 the portfolio performance evaluation procedure
using infinite blindfolded monkeys, and further dis-
cuss in detail the issues related to each step.

2.1 An analytical generalization of blindfolded
monkeys

Kim and Lee (2016) proposed the concept of a UDRP,
which is basically an n-dimensional random vector,

or a random portfolio on n number of risky assets,
uniformly distributed on an n-dimensional unit
hypersphere. They showed that these portfolios on a
unit hypersphere represent all feasible portfolios in
terms of their Sharpe ratios and analytically derived
the Sharpe ratio distribution of all feasible portfolios
with a minimal relaxation.2 For a portfolio ws 2 R

n

with Sharpe ratio s, the probability of ws to outper-
form the UDRP in the Sharpe ratio is as follows.

P ws to outperform the UDRPð Þ
¼ 1� 1

2 Isin2θs
n�1
2 ; 12

� �
if s � 0;

1
2 Isin2θs

n�1
2 ; 12

� �
else;

�

where Ix a; bð Þ is the regularized incomplete beta
function, and θs is the angle between LT�ws and LT�w

�.
Here, w� is the optimal tangent portfolio with the max-
imal Sharpe ratio, and LT� is a Cholesky decomposition
of the covariance matrix � of n risky assets. Figure 1
shows the Sharpe ratio distributions of the UDRP with
different numbers of assets calculated from the above
formula.

Kim and Lee further incorporated the no-short-
ing constraint to the UDRP to make it represent a
more practically sound set of portfolios. Note that
the ordinary UDRP is totally indifferent to
whether portfolio weights are positive or negative.
In practice, however, short positions cannot be
taken as freely as long positions. Therefore, we
see this non-negative version of the UDRP is bet-
ter to demonstrate blindfolded monkeys than the
ordinary UDRP.3

Note that the monkey in Arnott et al. (2013)
randomly picked 30 stocks and constructed an
equally weighted portfolio on them, whereas the
UDRP can pick any number of stocks and the
portfolio weights are also completely random.
Further, Arnott et al. (2013) simulated dartboard
portfolios only 100 times, while the UDRP method
deals with an infinite number of random portfo-
lios. Thus, we may well consider the UDRP as an
analytical generalization of Malkiel’s blindfolded
monkeys.

1A website ‘The Monkey Shakespeare Simulator’ actually simulated a large population of randomly typing monkeys and reported that it took 2,737,850
million billion billion billion monkey years to reach a 24 character-long matching sequence from Henry IV, Part 2.

2They assumed that the portfolios are uniformly distributed on an n-dimensional unit hypersphere in a LT�-transformed space, instead of the original space.
(LT� denotes a Cholesky decomposition of the covariance matrix � of n risky assets. In other words, � ¼ L�LT�).

3See the Appendix for details about the non-negative UDRP.
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2.2 Implementation procedure

Portfolio performance evaluation with infinite blind-
folded monkeys can be implemented by using the
following three steps:

Step 1. Identify the target asset universe
Step 2. Choose a proxy for the target asset

universe
Step 3. Calculate the performance ranking via the

UDRP formula

In Step 1, a target asset universe of a portfolio needs
to be identified. Of course, a target asset universe
should at least include the assets held by the portfolio.
For instance, if we wish to evaluate a portfolio of a
manager who invests in the U.S. large-cap equities, the
target universe for this portfolio should at least be the
U.S. large-cap equities. However, one may wish to
evaluate the portfolio within a larger asset universe,
say, the entire U.S. equity market, depending on the
purpose of the performance evaluation. If the target
asset universe is set as the U.S. large-cap equities only,
then the evaluation excludes the possibility of invest-
ments in other asset classes. On the other hand, if the
entire U.S. equities are chosen as the target asset uni-
verse, then the opportunity costs of not investing in
the U.S. mid- or small-cap equities are incorporated
into the performance evaluation.

In order to generate infinite blindfolded monkeys
we need to estimate the expected excess return and the
covariance matrix μ;�ð Þ of the target asset universe
during the evaluation period. This is Step 2. If the

target asset universe is the entire U.S. equity market
and the evaluation period is year 2015, we need to
estimate the expected excess returns and the covar-
iance matrix of all stock in the U.S. equity market in
2015. Of course, this is not a trivial task because there
are thousands of stocks in the U.S. equity market.
Instead, one can divide the target asset universe into
a number of sub-asset classes and use them as a proxy
for the target asset universe.4 For example, the style
portfolios or the industry portfolios provided by
Kenneth French through his website5 would be a
decent proxy for the U.S. equity market.

Now we are all ready for the performance evalua-
tion, Step 3. The performance ranking of a portfolio
among infinite blindfolded monkeys can be calculated
by the non-negative UDRP formula given in the
Appendix with inputs of the Sharpe ratio of the port-
folio to be evaluated and the expected excess returns
and the covariance matrix of the target asset universe.

3. Numerical example –U.S. equitymutual funds
versus blindfolded monkeys

In this section, we analyse the performance of the U.S.
equity mutual funds to provide a comprehensive illus-
tration of how the proposedmethodology can be used to
evaluate portfolio performance. Note that the intuition
for the proposed performance measure came from the
claim of Malkiel, and evaluating the U.S. equity mutual
funds using the proposed method is equivalent to

-1 -0.5 0 0.5 1

Normalized Sharpe ratio

0.2

0.4

0.6

0.8

Number of assets = 25

-1 -0.5 0 0.5 1

Normalized Sharpe ratio

0.2

0.4

0.6

0.8

Number of assets = 50

-1 -0.5 0 0.5 1

Normalized Sharpe ratio

0.2

0.4

0.6

0.8

Number of assets = 75

0.01

0.02

0.03

0.04

0.01

0.02

0.03

0.04

0.01

0.02

0.03

0.04

Figure 1. Probability density function (dotted line, right y-axis) and cumulative density function (real line, left y-axis) of the
normalized Sharpe ratio of the UDRP: Normalized Sharpe ratio denotes the Sharpe ratio of a portfolio divided by that of the
maximal Sharpe ratio that can be achieved within the market.

4The results of Kim, Lee, and Lee (2014) indicate that the Sharpe ratio range of a sub-portfolio proxy is smaller than that of the original target asset universe.
Thus, some portfolios might have exceptionally high (or low) Sharpe ratios that exceed the Sharpe ratio range of the proxy asset universe. But, one can
easily handle these cases by automatically setting the maximum (or minimum) performance ranking to such portfolios.

5Kenneth French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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directly proving (or disproving) his claim. Specifically,
we analyse four datasets, all the U.S. equity mutual
funds, and large-cap, mid-cap, and small-cap equity
mutual funds, in order to compare the differences in
distributional behaviours of mutual fund performances
depending on their investment styles.We further test the
performance of mutual funds by changing the levels of
mutual fund fees to verify how the results are affected by
fees.

Even though there is overwhelming empirical
evidence reported in the literature about the perfor-
mance of the U.S. equity mutual funds,6 our new
approach would be able to provide a new perspective.
Existing studies could only conduct points-to-points
comparison analysis, that is, they selected a few points
that represented the performance distributions of
mutual funds (e.g. average or median), and compared
them to the performance of another point that repre-
sented the market, such as the cap-weighted index.
Even though they had distributions of mutual fund
performance, they had to sacrifice the distributional
characteristics of the mutual fund industry due to the
absence of a full-distributional counterpart. Moreover,
results of points-to-points comparison analyses may be
vulnerable to the conditions of the benchmark. Note
further that Kim and Lee (2016) indicated that the cap-
weighted portfolio exhibits large variabilities in
historical performance ranking among the enumera-
tion of all possible portfolios. Therefore, as our distri-
bution-to-distribution comparison analysis could
incorporate the distributional characteristics of mutual
funds, its conclusion should be more robust and com-
prehensive than points-to-points comparison analyses.

3.1 Data description

U.S. equity mutual fund data were collected from the
Center for Research in Security Prices (CRSP) survi-
vorship-bias free mutual fund database. We retrieved
monthly returns of all mutual funds that are classified
as ‘domestic’ and ‘equity’ from 1999 to 2014. Table 1
shows the number of U.S. equity mutual funds avail-
able from the database. The first column ‘Total’
represents all the data retrieved, and the other three
columns represent U.S. equity mutual funds that stated

their strategies as ‘Large-cap’, ‘Mid-cap’, and ‘Small-
cap’, respectively. Because there are many other U.S.
equity mutual funds that employ many different stra-
tegies, the numbers in the first column are not equal to
the sum of the numbers in the other columns.

In order to generate a UDRP that represents the U.S.
equity market, we used Kenneth French’s 100 style
portfolios7 formed on the market cap and book-to-
market ratio, instead of thousands of individual stocks
because it is difficult to estimate parameters, such as
covariance matrix, of a large number of securities.
These 100 style portfolios would be an appropriate
proxy for generating a UDRP that represents the U.S.
equity market, as they cover all NYSE, AMEX, and
NASDAQ stocks. For fund style-based analyses, we
divide 100 style portfolios into the top 0–30% (large-
cap), 30–70% (mid-cap), and 70–100% (small-cap) in
terms of their market capitalization to generate style-
based UDRPs. Thus, for example, U.S. large-cap equity
mutual funds are analysed with respect to the UDRP
generated using the means and covariances of the top
30 portfolios, in terms of their market capitalization,
among the 100 style portfolios.

3.2 Experiments

In order to investigate Malkiel’s conjecture thoroughly,
we checked the existence of stochastic dominance
between the Sharpe ratio distributions of the U.S. equity

Table 1. Number of U.S. equity mutual funds available from the
CRSP database.

Years

Number of mutual funds

Total Large-cap Mid-cap Small-cap

1999 6,237 152 641 1,045
2000 7,506 193 766 1,162
2001 8,373 222 897 1,289
2002 9,009 223 1,015 1,400
2003 9,257 223 1,051 1,476
2004 9,404 211 1,097 1,519
2005 10,022 202 1,202 1,606
2006 10,643 200 1,269 1,694
2007 11,409 201 1,341 1,757
2008 13,999 258 1,565 2,006
2009 14,211 250 1,556 1,961
2010 13,897 233 1,407 1,842
2011 14,273 234 1,394 1,828
2012 14,470 232 1,383 1,797
2013 14,652 225 1,346 1,815
2014 13,557 194 1,234 1,675

6See, for example, Treynor (1965), Sharpe (1966), Jensen (1968), Malkiel (1995), Carhart (1997), Wermers (2000), and Fama and French (2010). Berk and Van
Binsbergen (2015) provide a review of mutual fund performance but their conclusion is different from most of the literature; that is, they argue that
managers do have skills.

7Source: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html .
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mutual funds and blindfoldedmonkeys (i.e. the UDRP).
Stochastic dominance basically determines a partial
order between two random variables. Thus, if we regard
the U.S. equity mutual funds and blindfolded monkeys
as two entities that produce random Sharpe ratios based
on their own probability distributions, we now can
literally determine a stochastic ordering between the
two entities by examining the existence of stochastic
dominance between the two probability distributions.

The qth order stochastic dominance is defined as
follows. Consider two random variables XA and XB.
XA is qth order stochastically dominant over XB if

I q fXA xð Þ½ � � I q fXB xð Þ½ �; for all x 2 �1;1ð Þ;
where I is the integration operator, and fX is the
probability density function of X. Note that a lower-
order dominance implies a higher-order dominance.
Thus, the lower the order is, the stronger the dom-
inance. We check until the second order to deter-
mine whether there is a stochastic dominance
between two entities, as higher-order dominances
do not exhibit many practical implications.

Experiments are conducted as follows. For four
investment universes (total, large-cap, mid-cap, and
small-cap) from year 1999 to 2014,

Step 1: Calculate the Sharpe ratios of mutual funds
Step 2: Calculate the Sharpe ratio distribution of

blindfolded monkeys (non-negative UDRP) (using
the means and covariances of style portfolios)

Step 3: Check the existence of first- or second-
order stochastic dominance between the two Sharpe
ratio distributions

Step 4: Repeat Steps 1–3 with various mutual fund
fee adjustments8

(−5%, −4%, −3%, −2%, −1%, 0%, 1%, 2%)
The following subsections present the results of the

experiments above. First, we discuss whether or not
mutual funds outperform blindfolded monkeys after
fees. Second, we further investigate mutual fund per-
formances against blindfolded monkeys to see how
the after-fee results are affected by mutual fund fees.

3.2.1 Are the fund managers better than blindfolded
monkeys after fees?
Table 2 presents the existence of first- or second-
order stochastic dominance between the Sharpe ratio

distributions of the U.S. equity mutual funds and
blindfolded monkeys. We marked ‘1’ if blindfolded
monkeys dominate mutual funds, ‘−1’ if mutual
funds dominate blindfolded monkeys, and ‘0’ if
there is no entity that dominates the other.

Table 2 shows that there is no stochastic ordering
between the two subjects in most cases (68.75–87.50%,
depending on the investment universe). In other words,
risk-adjusted performances of mutual funds are indis-
tinguishable from those of blindfoldedmonkeys inmost
cases. Although the results slightly vary depending on
the investment style universe, the number of monkey-
dominating cases (11) is more than double the number
of the opposite cases (5). Most importantly, when the all
the mutual fund data are employed, blindfolded mon-
keys dominate mutual funds in more than 30% of the
cases, whereas there are no opposite cases. Hence, these
results clearly show that mutual funds do not systemi-
cally outperform blindfolded monkeys after fees.
Arguably, mutual funds appear to be doing worse than
the monkeys after fees, except for when the analysis is
within the large-cap investments. However, we note that
the results for the large-cap investments may not be as
solid as the others because the number of large-cap
funds is quite small compared to other fund styles.

Table 2. Stochastic dominance between the U.S. equity mutual
funds and blindfolded monkeys (after-fees).
Year Total Large-cap Mid-cap Small-cap

1999 1 −1 0 1
2000 1 0 0 0
2001 1 0 1 1
2002 1 0 1 0
2003 0 0 0 1
2004 0 0 0 0
2005 0 0 0 0
2006 0 0 0 1
2007 0 0 0 0
2008 1 0 0 0
2009 0 0 0 0
2010 0 0 0 0
2011 0 0 0 0
2012 0 0 −1 −1
2013 0 0 0 0
2014 0 −1 −1 0
UDRP 31.25% 0.00% 12.50% 25.00%
MF 0.00% 12.50% 12.50% 6.25%
None 68.75% 87.50% 75.00% 68.75%

The existence of dominance is represented as ‘1’ if blindfolded monkeys
dominate mutual funds, ‘−1’ if mutual funds dominate blindfolded mon-
keys and ‘0’ if there is no dominance. The last three rows represent the
proportions of each case. In other words, ‘UDRP’, ‘MF’, and ‘None’ show
the percentages of monkey-dominating, fund-dominating, and no-dom-
inance cases, respectively.

8We adjust mutual fund fees by simply adding −5% to 2% annual returns to mutual fund after-fee returns. For example, we reduce mutual fund fees by 1%
by adding −1% annual returns to all mutual fund after-fee returns. Even though it does not precisely incorporate various fee structures, it is an effective
way to see the effect of fee adjustments.
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3.2.2 Are the fund managers better than blindfolded
monkeys before fees?
Now we look at whether the conclusion in the pre-
vious subsection is reversed when the effects of
mutual fund fees are considered. As described at
the beginning of Section 3.2, we investigated the
effects of mutual fund fee levels by simply adding
or subtracting 1–5% of annual returns to all mutual
fund returns. For example, we simulate the effect of
a 1% mutual fund fee reduction by adding 1% of the
annual returns to the mutual fund returns. Even
though this approach cannot incorporate all differ-
ent fund fee structures, we believe that it would well
simulate the overall effects of various levels of fee
adjustments on fund performances.

Stochastic dominances between all the U.S. equity
mutual funds and blindfolded monkeys with various
levels of mutual fund fee adjustments are shown in
Table 3. The results in the column with 0% fee adjust-
ment are the same as those presented in the ‘Total’
column of Table 2. Because the average of U.S. mutual
fund fees are said to be around 2% (see Khorana,
Servaes, and Tufano 2009), it would be reasonable to
consider that −1% to −3% fee adjustments would
demonstrate before-fee results.

While the dominance results are almost unaf-
fected by the 1% fee reduction, almost all stochas-
tic orderings between mutual funds and random
portfolios disappear when mutual fund fees are

reduced by 2–3%. That is, mutual funds and blind-
folded monkeys are not outperforming each other
before fees. It is, however, interesting to note that
mutual funds do not dominate monkeys with
further reductions in mutual fund fees, whereas
monkeys become largely dominant with fee incre-
ments. Therefore, the overall results indicate that
blindfolded monkeys are slightly dominant over
mutual funds even before fees, although there is
almost no actual before-fee dominance between
the two.

The test results of large-cap, mid-cap, and small-
cap mutual funds are presented in Tables 4, 5, and 6,
respectively. It can be seen from the tables that the
no-dominance case is still dominant (56.25–81.25%)
around −1% to −3% fee adjustments for all fund
styles. In these cases, however, fund managers do
dominate blindfolded monkeys in around 12.50–
43.75% of the total cases, whereas there were no
fund-dominating cases when the whole equity mar-
ket was considered. In this analysis, therefore, the
skills of fund managers become more prominent
when the target investment universe gets more spe-
cific. Therefore, we may argue from these results that
it would become harder for fund managers to beat
the market when larger investment universes are
considered, or equivalently, a market should consist
of a sufficiently large number of assets in order for
the market to be efficient.

Table 3. Stochastic dominance between the U.S. equity mutual funds (total) and blindfolded monkeys with mutual fund fee
adjustments.

Year

Mutual fund fee adjustment

−5% −4% −3% −2% −1% 0% 1% 2%

1999 0 0 0 0 1 1 1 1
2000 0 0 0 0 1 1 1 1
2001 0 0 0 1 1 1 1 1
2002 0 0 0 0 1 1 1 1
2003 0 0 0 0 0 0 0 1
2004 0 0 0 0 0 0 1 1
2005 0 0 0 0 0 0 0 1
2006 0 0 0 0 0 0 0 1
2007 0 0 0 0 0 0 0 0
2008 0 0 0 0 0 1 1 1
2009 0 0 0 0 0 0 0 0
2010 0 0 0 0 0 0 1 1
2011 0 0 0 0 0 0 0 0
2012 0 0 0 0 0 0 0 0
2013 0 0 0 0 0 0 1 1
2014 0 0 0 0 0 0 0 0
UDRP 0.00% 0.00% 0.00% 6.25% 25.00% 31.25% 50.00% 68.75%
MF 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
None 100.00% 100.00% 100.00% 93.75% 75.00% 68.75% 50.00% 31.25%

The existence of dominance is represented as ‘1’ if blindfolded monkeys dominate mutual funds, ‘−1’ if mutual funds dominate blindfolded monkeys and ‘0’
if there is no dominance. The last three rows represent the proportions of each case. In other words, ‘UDRP’, ‘MF’, and ‘None’ show the percentages of
monkey-dominating, fund-dominating, and no-dominance cases, respectively.
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4. Conclusions

In this study, we revisited the claim of Malkiel (1973)
which states that fundmanagers would not outperform
a dart-throwing blindfolded monkey, to propose an
alternative approach to portfolio performance evalua-
tion that compares a portfolio with respect to an infi-
nite number of blindfolded monkeys. We used the
method of a UDRP developed by Kim and Lee (2016)
to actually implement infinite blindfolded monkeys.

The proposed method exhibits two main advan-
tages. First, it is benchmark-free. In other words, we
do not have to specify the benchmark because a
portfolio is already being compared to an infinite
number of portfolios. Thus, the methodology can be
easily applied to markets other than equities where
well-established benchmarks rarely exist. Second, it
is market condition invariant. As the market
condition is already reflected in the performances

Table 4. Stochastic dominance between the U.S. equity mutual funds (large-cap) and blindfolded monkeys with mutual fund fee
adjustments.

Year

Mutual fund fee adjustment

−5% −4% −3% −2% −1% 0% 1% 2%

1999 −1 −1 −1 −1 −1 −1 0 0
2000 0 0 0 0 0 0 0 0
2001 0 0 0 0 0 0 0 0
2002 0 0 0 0 0 0 0 1
2003 0 0 0 0 0 0 0 0
2004 −1 −1 0 0 0 0 0 0
2005 −1 −1 0 0 0 0 0 0
2006 −1 −1 −1 −1 0 0 0 0
2007 −1 −1 −1 0 0 0 0 0
2008 0 0 0 0 0 0 0 0
2009 0 0 0 0 0 0 0 0
2010 −1 −1 0 0 0 0 0 0
2011 −1 −1 −1 −1 −1 0 0 0
2012 −1 −1 −1 −1 −1 0 0 0
2013 −1 −1 −1 −1 0 0 0 0
2014 −1 −1 −1 −1 −1 −1 −1 −1
UDRP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 6.25%
MF 62.50% 62.50% 43.75% 37.50% 25.00% 12.50% 6.25% 6.25%
None 37.50% 37.50% 56.25% 62.50% 75.00% 87.50% 93.75% 87.50%

The existence of dominance is represented as ‘1’ if blindfolded monkeys dominate mutual funds, ‘−1’ if mutual funds dominate blindfolded monkeys and ‘0’
if there is no dominance. The last three rows represent the proportions of each case. In other words, ‘UDRP’, ‘MF’, and ‘None’ show the percentages of
monkey-dominating, fund-dominating, and no-dominance cases, respectively.

Table 5. Stochastic dominance between the U.S. equity mutual funds (mid-cap) and blindfolded monkeys with mutual fund fee
adjustments.

Year

Mutual fund fee adjustment

−5% −4% −3% −2% −1% 0% 1% 2%

1999 0 0 0 0 0 0 0 0
2000 0 0 0 0 0 0 1 1
2001 1 1 1 1 1 1 1 1
2002 0 0 0 0 0 1 1 1
2003 0 0 0 0 0 0 1 1
2004 0 0 0 0 0 0 1 1
2005 0 0 0 0 0 0 0 1
2006 0 0 0 0 0 0 1 1
2007 0 0 0 0 0 0 0 0
2008 0 0 0 0 0 0 0 1
2009 0 0 0 0 0 0 0 0
2010 −1 −1 −1 −1 −1 0 0 0
2011 −1 −1 −1 −1 0 0 0 0
2012 −1 −1 −1 −1 −1 −1 0 0
2013 −1 −1 −1 −1 0 0 0 0
2014 −1 −1 −1 −1 −1 −1 −1 −1
UDRP 6.25% 6.25% 6.25% 6.25% 6.25% 12.50% 37.50% 50.00%
MF 31.25% 31.25% 31.25% 31.25% 18.75% 12.50% 6.25% 6.25%
None 62.50% 62.50% 62.50% 62.50% 75.00% 75.00% 56.25% 43.75%

The existence of dominance is represented as ‘1’ if blindfolded monkeys dominate mutual funds, ‘−1’ if mutual funds dominate blindfolded monkeys and ‘0’
if there is no dominance. The last three rows represent the proportions of each case. In other words, ‘UDRP’, ‘MF’, and ‘None’ show the percentages of
monkey-dominating, fund-dominating, and no-dominance cases, respectively.
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of blindfolded monkeys, our method can provide a
consistent measure of portfolio performance regard-
less of the ever-changing market conditions. In other
words, we now have a simple procedure that allows
us to obtain something similar to the NBA season
standing for portfolios.

Disclosure statement

No potential conflict of interest was reported by the authors.
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2006 −1 0 0 0 0 1 1 1
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UDRP 6.25% 6.25% 6.25% 6.25% 6.25% 25.00% 25.00% 31.25%
MF 56.25% 43.75% 31.25% 18.75% 12.50% 6.25% 0.00% 0.00%
None 37.50% 50.00% 62.50% 75.00% 81.25% 68.75% 75.00% 68.75%

The existence of dominance is represented as ‘1’ if blindfolded monkeys dominate mutual funds, ‘−1’ if mutual funds dominate blindfolded monkeys and ‘0’
if there is no dominance. The last three rows represent the proportions of each case. In other words, ‘UDRP’, ‘MF’, and ‘None’ show the percentages of
monkey-dominating, fund-dominating, and no-dominance cases, respectively.
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Appendix. Implementation of non-negative
UDRP

A.1. Assumptions

In Kim and Lee (2016), an ordinary UDRP is a random
variable that is uniformly distributed on the surface of an
n-dimensional unit hypersphere in a LT�-transformed space,
where LT� is a Cholesky decomposition of the covariance
matrix � of n risky securities (i.e. � ¼ L�LT�). Then, the
non-negative UDRP would be a random variable that is
uniformly distributed on the non-negative part of the surface
of an n-dimensional unit hypersphere.

However, it is difficult to analytically derive the perfor-
mance distribution of all possible portfolios within the exact
non-negative area on the surface of an n-dimensional unit
hypersphere. Therefore, Kim and Lee (2016) approximate the
non-negative area based on the following observations. The
non-negative area on the surface of a unit hypersphere is
centred at 1, which denotes an n-dimensional vector of ones,
and has the surface area equal to An=2n, where An represents
the surface area of an n-dimensional unit hypersphere.
Consequently, they approximate the non-negative area with
a hypersphreical cap FRþ that is centred at LT�1 and has the

surface area equal to An=2n. Then, the approximated non-
negative area FRþ should have the colatitude angle of

θFRþ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1
1=2n�1

n� 1
2

;
1
2

� �s
:

A.2. Formula
For a portfolio ws 2 R

n with Sharpe ratio s, the probability of
ws to outperform the non-negative UDRP in the Sharpe ratio
can be calculated as follows.

P ws to outperform the non� negative UDRPð Þ

¼ 1� AC
n

LT�1; θFRþ
� �\ C LT�w

�; θs
� �

AC
n LT�1; θFRþ
� �

Here, w� is the optimal tangent portfolio, and θs and θv 2
0; π½ � are the angle between LT�ws and LT�w

� and the angle
between LT�1 and LT�w

�, respectively. C v; θð Þ represents the
unit hyperspherical cap whose axis is v and colatitude angle

is θ, and A
C LT�1;θFRþð Þ\ C LT�w

�;θsð Þ
n and A

C LT�1;θFRþð Þ
n are the sur-

face areas of C LT�1; θFRþ
� �\ C LT�w

�; θs
� �

and C LT�1; θFRþ
� �

,
respectively. The surface area of a hyperspherical cap and the
intersection of two hyperspherical caps can be calculated by
the formula given by Li (2011) and Lee and Kim (2014).
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